

Sport Performance Diagnostic Institute

跆拳道高頻率旋踢對血液乳酸濃度之影響(個案探討)

李婉禎¹ 王月琪² 張嘉澤¹

國立體育大學運動技術研究所2國立體育大學運動教練研究所

壹、緒論

有氧耐力為各種運動項目基礎,不論任何運動項目之選手,皆應擁 良好的有氧耐力能力,使身體能在短時間內快速恢復無氧非乳酸系統, 以應付長時間之比賽(張嘉澤,2008)。Mader (1976) 年所提出 2-4mmol/l 閾值,當運動負荷產生乳酸堆積約 2mmol/1,此時身體能量提供主要路徑 為脂肪。專項耐力要求是依據比賽時間所需能量提供系統分區。技擊項 目(跆拳道),比賽能量提供來源皆是無氧非乳酸系統(CrP),而無氧非乳 酸能量的恢復,必須依賴高度的有氧耐力能力,在短時間的間歇,快速 填滿肌肉之 CrP。〈張嘉澤,2010〉。所以在有氧耐力好的人恢復的速度比 較快。而乳酸與運動負荷的關係,乳酸是繼心跳率之後,在競技運動或 體適能運動領域扮演重要的角色,它可作為準確的訓練負荷「劑量」設 定與訓練調整指標,訓練上可以依據有氧閾值與無氧閾值這兩點之對應 速度,設定不同強度之有氧耐力或是無氧耐力的訓練〈張嘉澤,2010〉。 乳酸排除分解先是由肝臟 50%,接著由骨骼肌 30%,心肌和腎臟各佔 10%,在肝臟是進行糖質新生,在肌肉組織的乳酸分解是執行肝糖的重 組。在訓練時乳酸的堆積,平均每分鐘 0.5mmol/l(Neumann et al., 1993)。 訓練後 30min 的恢復休息,乳酸濃度將下降至訓練前狀態。而休息的形 式,也是決定乳酸排除的速度(Badtke, 1987)。競技運動員在最大負荷結 束,血液乳酸排除速度可達到 0.5mmol/l/min,未訓練者排除速度則為 0.3mmol/l/min,動態活動休息優於靜態方式(Neumann et al., 1991)。

貳、研究方法

一、研究對象

本研究對象以大專甲組女子組跆拳道選手一名,年齡23歲,訓練年 數 8 年,身高為 163 公分,體重 50 公斤。

二、研究方式

本研究測試分為專項連續旋踢與基礎耐力兩項。專項以間歇方式原 地左右腳連續旋踢,負荷範圍為 3x3x10s 踢擊 (100%),每次間歇 20 s, Set 休息 2 分鐘。生物參數為乳酸、心跳、頻率。基本耐力測試(2-4mmol/l), 測試前以耳垂採取血液,並於每階紀錄心跳率。開始速度為 2.5m/s,每 階持續 5min,每階速度上升 0.5m/s,直到受試者最大負荷為止。每階之 間與完全結束後 E3、5、7、10、15min 採取血液並紀錄心跳率。所有數 據以平均值與標準差呈現,再以T-Test 進行差異分析。

參、 結果分析與討論

表-1:有氧與無氧閾值基礎能力分析。受試者有氧閾值速度為 2.3m/s, 心跳率則為125 min-1, 無氧閾值速度與心跳率分別為 3.3m/s, 151 min-1。過去研究發現有氧與無氧速度標準值分別為2.8 m/s與3.5 m/s(Hollmann et al. 1987),本研究受試者有氧閾值速度與標準值差異0.5 m/s 無氧則與標準值差異0.2 m/s。

表-1 基礎能力測試

	基礎耐力		
	有氧閾值	無氧閾值	
m/s	2.3	3.3	
HR	125	151	

圖-1: 間歇踢擊血液乳酸堆積、心跳率與踢擊頻率。S-1 心跳率平均 為 145±7.9 min-1、踢擊頻率平均為 22±0.6(次)、血液乳酸為 3.63 mmol/1。 S-2 心跳率平均為 151±5.6 min-1、踢擊頻率平均為 23±2 次、血液乳酸為 7.16 mmol/l·S-3 心跳率平均為 152±5.3 min -1、踢擊頻率平均為 23±0.6(次) 乳酸為 8.85 mmol/l。三次踢擊頻率均未達顯著差異 (p>0.05) 。Set-1 與 Set-2 乳酸堆積濃度差異+5.2mmol/l,心跳率則差異+7min $^{-1}$ 。

跆拳道主要能量來源為無氧非乳酸,必須依賴高度的有氧耐力能 力,在短時間的間歇,快速填滿肌肉之 CrP。〈張嘉澤,2010〉。運動時乳 酸排除率是根據有氧代謝轉換程度及乳酸的濃度,這兩種因素越高,乳 酸排除就越大(Heck,1990)。研究指出乳酸產生是依據運動時間、運動強 度、運動方式為基礎,訓練時乳酸值不可超過8mmol/l(Liesen, 1983)。此 測試(S-3)乳酸值大於 8mmol/l,與理論不符,因此推斷受試者有氧耐力不 足, 導致無法快速恢復而產生高乳酸。

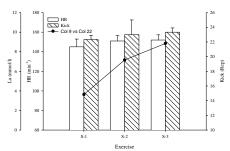


圖-1: 間歇踢擊血液乳酸堆積、心跳率與踢擊頻率

圖-2 為 3x3x10s 踢擊恢復期乳酸排除速度。運動負荷乳酸值最高出 現為(E-1) 8.85 mmol/l, 而運動結束隨著時間變化 E-3,E-5,E-7 分別為 8.79 mmol/l、8.81 mmol/l、8.51 mmol/l, 而在 E-10 為乳酸值最低 7.76 mmol/l。 乳酸值最高和乳酸值最低相差為-1.09mmol/1,乳酸堆積速度為

乳酸排除分解首先是由肝臟佔 50%、心肌和腎臟各佔 10%。在肝和 腎是進行糖質新生,在肌肉組織的乳酸分解是執行肝醣的重組。競技運 動員在最大負荷結束,血液乳酸排除速度可達 0.5mmol/l/min (Neumann et al.,1991),此測試負荷後乳酸排除率未達標準,因此推斷受試者有氧耐力 能力不足導致乳酸排除速度緩慢之原因。

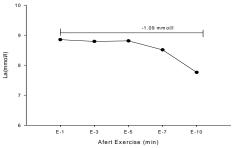


圖-2: 3x3x10s 踢擊恢復期乳酸排除速度

肆、結論

本研究結果發現跆拳道間歇方式於短時間高速度踢擊對乳酸濃度影 響來自於有氧耐力能力,若有氧耐力能力差,在訓練中乳酸曲線將急速 攀升,訓練後乳酸排除速度也會減緩,因此需加強有氧耐力之能力,以 提升跆拳道踢擊頻率及乳酸排除速度。

主要参考文獻

Mader, A., H. Liesen, H. Heck, H. Philippi, R. Rost, P. Schürch, W. Hollmann. (1976). Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt und Sportmedizin. 27 (4), 80-88. In: 張嘉澤,運動能力

Neumann, G., Pfützner, A., Hottentott, K. (1993). Alles unter Kontrolle. 1. Auflage. Aachen: Meyer & Meyer. In: 張嘉澤,運動能力診斷與訓練調整。 Neumann, G. (1991): Zur Leistungsstruktur der Kurz-und Mittelzeitausdauer-Sportarten aus sportedizinischer Sicht. Leistungspot 21,29. In: 張嘉澤,運動 能力診斷與訓練調整。

Heck, H. (1990). Energiestoffwechsel und medizinische Leistungsdiagnosk. Trainerakademie Köln, schorndorf. Hofmann. 39-46. In: 張嘉澤,運動能力 診斷與訓練調整。

張嘉澤 (2008)。訓練學。臺北縣:臺灣運動能力診斷協會。

張嘉澤 (2010)。運動能力診斷與訓練調整。臺北縣:臺灣運動能力診斷 協會。

